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ABSTRACT

An algorithm has been developed that uses flight data to estimate the parameters in an attitude dynamics model of a
spacecraft. The new algorithm's estimates can enhance the fidelity of Euler equation models that are used to implement back-
up mode attitude determination and control functions. The agorithm's estimation equation is an integrated version of Euler's
equation expressed in inertial coordinates. It uses 3-axis attitude data and 3-axis rate-gyro data to yield a set of linear
equations in the unknown dynamics parameters, which include moments and products of inertia and scale factors, alignments,
and biases for al reaction wheels and magnetic torque rods. The estimation problem statement includes the statistics of
unmodeled torques and sensor errors, and it incorporates a scalar quadratic constraint to overcome the usua unobservability
of the overal scaling of the dynamic parameters. The sensor errors enter the model equation in a multiplicative fashion,
which yields a total |east-squares problem. The solution algorithm employs a guarded Newton iteration and special recursive
factorizations that deal efficiently with the dynamic structure of the measurement error effects. The algorithm has been
applied to the Microwave Anisotropy Probe (MAP) spacecraft, and the resulting parameter estimates show an ability to
reduce torque modeling errors by afactor of 5 to 10.

INTRODUCTION

The goal of this research is to develop improved Euler attitude dynamics models for spacecraft by using flight data to
estimate model parameters. Parameters that might be estimated include the independent elements of the moment-of-inertia
matrix, reaction wheels' and magnetic torque rods scale-factors and alignments, and residual spacecraft angular momentum
and magnetic dipole moment. The latter quantities are the equivalent of biases in the reaction wheels and torque rods. The
estimation procedure presumes the availability of very accurate attitude and rate data from star trackers and rate gyros. It also
requires nomina reaction wheel angular momenta, nomina torque rod dipole moments, and magnetometer outputs, if
relevant.

The primary motivation for this work is to improve the performance of back-up mode attitude determination systems.
Such systems use a reduced set of sensors because of the failure of primary sensors. They must be able to operate without
rate-gyro data or with incomplete rate-gyro information. This type of system relies on Euler’s equation to propagate attitude
rate estimates as in Refs. 1-7. Improved Euler models also could be used to develop back-up mode slewing and pointing
controllers that could function with areduced actuator set.

Back-up systems that rely on an Euler equation model exploit the property of observability or controllability of an
attitude dynamics system in order to accomplish 3-axis attitude determination or control without the need for full 3-axis
sensing or actuation. The stability and accuracy/pointing performance of all such systems are highly dependent on the
accuracy with which the rate dynamics can be modeled by Euler’s equations. System designers normally try to avoid relying
on Euler's equation because there is usually a significant level of uncertainty about the relevant parameters and disturbance
torques.

One may not be able to avoid reliance on Euler’ s equation when in back-up mode. Therefore, it would be good to have
better parameter estimates. The scenario of this paper envisions the availability of highly accurate information from sensors
during a time period before back-up mode operation is required. Its estimation algorithm can use this data to devel op attitude
parameter estimates which could be used as part of a back-up system that could operate later in the mission if any of the
primary sensors failed.

A number of previous works have attempted to estimate attitude dynamics parameters. Reference 2 performed off-line
estimation of moment-of-inertia parameters by considering the nutation mode oscillations of a spinning spacecraft. The
direction, phasing, and frequency of these oscillations were used to correct 5 of the 6 inertia matrix elements. Other efforts
estimated corrections to 5 of the 6 inertia matrix elements as part of an EKF whose primary function was to estimate rate only
or attitude and rate “®’. A common theme of these efforts is the attempt to improve parameter estimates in the Euler model
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based on limited sensor data of moderate to coarse accuracy. None of these systems attempted to estimate dynamics
parameters other than elements of the moment-of-inertia matrix.

This paper’s principal contributions are to define an attitude dynamics parameter estimation problem and to develop an
algorithm to solve it. The problem is based on satisfying Euler's equation. A genera set of Euler dynamics parameters can
congtitute the problem's unknowns. These parameters enter Euler's equation linearly. The problem formulation presumes that
accurate 3-axis attitude and rate sensor time histories are available. The measurement errors, such as rate-gyro errors and
errors in the reported reaction wheel angular momenta, enter as perturbations to the coefficient matrix that multiplies the
unknown parameter vector in the estimation equation. This bilinear form of the model equation yields what is known as a
total least-squares problem 2°. The solution algorithm simultaneously estimates the unknown parameter vector and the
multiplicative measurement errors.

There exist closed-form global solutions to certain total least-squares problems ® but such techniques are not
applicable to the attitude dynamics parameter estimation problem because their measurement error models are not general
enough. The philosophy taken here is that it is better to solve the desired problem using a less general, less robust algorithm
than to use a more general, more robust algorithm that forces unrealistic modeling assumptions. The exact solution of the
wrong problem is normally not very useful!

This paper’s agorithm applies a mixture of linear and nonlinear optimization techniques in a divide-and-conquer
approach. Recursive linear techniques are used to perform a global inner optimization that yields the best estimates of the
multiplicative measurement errors for a fixed guess of the attitude dynamics parameter vector. The recursion takes advantage
of the dynamic structure of the measurement error effects. An outer loop optimizes the |least-squares cost via Newton’s
iterative numerical method. Safe-guards are employed to ensure convergence to at least alocal minimum of the least-squares
cost function.

This paper develops a technique for dealing with the unobservability of the overall parameter scaling, which manifests
itself in the form of a homogeneous least-squares problem. A homogeneous problem isill-posed, having the trivia solution x
= 0. This paper recovers observability and makes the problem well posed by adding a priori information in the form of a
scalar constraint on a quadratic function of the unknown parameter vector. Such a constraint, if properly designed, does not
significantly bias the parameter estimates.

The paper’s other main contribution is to test its new algorithm on actual spacecraft data. These tests demonstrate the
effectiveness of the method, and they illustrate difficulties that can arise when using actual data. In particular, the results
illustrate the significant impact of certain types of measurement errors and the importance of using data that includes
sufficiently rich variations of the control input and attitude response time histories.

The remaining 5 sections of this paper describe the parameter estimation problem, the solution algorithm, and the
results that have been obtained for atest case. Section |1 sets up the total |east-squares attitude parameter estimation problem.
Section |1l develops the solution algorithm for the estimation problem. Section 1V presents a recursive QR factorization
algorithm that gets used to efficiently implement parts of Section I11's algorithm. Section V applies the algorithm to data
from the MAP spacecraft, and Section V| presents the paper’s conclusions.

[I. AN ATTITUDE PARAMETER ESTIMATION PROBLEM BASED ON EULER’'SEQUATION

Euler’s equation for the attitude dynamics of arigid spacecraft with reaction/momentum wheels equates the time rate of
change of angular momentum in inertial coordinates to the applied external torque. A trapezoidally integrated version of
Euler’s equation takes on the following form when expressed in inertial coordinates:
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The subscripts k and k+1 in this equation refer to values at the sample times of the beginning and end of the numerical
integration interval, t, and ty.;. Other quantities in eq. (1) are A, the direction cosines matrix for the transformation from
inertial coordinates to spacecraft coordinates, |, the moment-of-inertia matrix of the spacecraft body in body coordinates, w,
the angular velocity of the spacecraft with respect to inertial coordinates expressed in body coordinates, C,,, a scae-
factor/alignment matrix for the reaction wheels, h,, the vector of nominal reaction wheel angular momenta caused by their
rotation rates with respect to the spacecraft, hyiss, the net bias angular momentum in spacecraft coordinates of the reaction
wheels and any other spacecraft instruments when h,, = 0, by, the magnetic field vector in spacecraft coordinates, C,, a scale-
factor/alignment matrix for the magnetic torque rods, m, the vector of nominal torque rod magnetic dipole moments, my;,s, the



net bias dipole moment in spacecraft coordinates of the torque rods and any other spacecraft instruments when m = 0,
Ngg(AGinlm), the gravity gradient torque in spacecraft coordinates, and Dhy, the net inertial impulse due to unmodeled torques
during the integration interval. The gravity gradient torque is a function of the attitude matrix, the gravity-gradient tensor in
inertial coordinates, G;,,, and the moment-of-inertia matrix.

The unknown parameters that get estimated are I, Crw, hgias, Crt, @nd Myias. 1t is @ssumed that the other quantitiesin the
equation are al known, possibly with some measurement error. Star tracker data are used to determine A, and A..;. Rate
gyros provide w, and W.;. A magnetometer measures by and bgy.;. The command and data handling system records hyy,
hy+1, Mg, @nd me,;. The orbital ephemerides and an Earth gravity model can be used to compute G;p and Gip1-

The unknown parameters can be stacked into an estimation vector:
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where | isthe ijth element of |y, Cryj isthejth column of Cyy, and Cpy isthejth column of C.;. The number of reaction wheels
is n,, and the number of magnetic torque rods is n,. Thus, there are n, = 12 + 3(n,+n;) elements in this vector of unknown
parameters.

The parameter estimation algorithm determines the parameter values that minimize the sum of the square errors in
Euler’'s equation. It minimizes the weighted sum of the squared magnitudes of the residual unmodeled angular impulse time
history Dhino, Dhing, Dhin, ... Dhinyi.  Each Dhiy gets divided by its per-axis standard deviation Spn = /Dt Qpy, » Where
Dty = ty.1-t,. This operation normalizes the impulse errors before computing the sum of their squares. The quantity qm, is a
continuous-time white process noise intensity and is expressed in N-m?sec units. The unmodeled Dh;, impulses arise due to
solar and albedo radiation pressure torque, aerodynamic drag torque, and thermal radiation pressure torque.

An integrated version of Euler's equation is used in order to avoid the need to differentiate the measured angular
velocity vector time history, Wi, W1, ... Trapezoidal integration yields a reasonable approximation if the rotation
0.5(WitWie1) (ter1-t) has a magnitude much smaller than 1. If the gravity-gradient and magnetic torques are negligible, then
trapezoidal integration is exact. Inertial coordinates are used in order to avoid the squaring of angular velocity that appearsin
thew | wterm of the spacecraft-referenced version of Euler's equation.

Equation (1) could be generalized to include articulating appendages, such as solar arrays. The estimator would need
articulation angle data in this case, and it could estimate corrections to a subset of the appendage's moment-of-inertia
elements. If the spacecraft dynamics included significant flexibility or fuel slosh motions, then eg. (1) would be a poor
dynamic model, and this paper's estimation algorithm would not produce useful results.

All of the unknown parameters enter eg. (1) linearly. Thisis obvious for all terms except the gravity gradient function.
The gravity gradient formulais:
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where G, = AG;,A" is the gravity-gradient tensor in spacecraft coordinates. The elements of |, enter eq. (3)'s gravity gradient
torque model linearly.

Measurement errors and the integrated effects of unmodeled disturbance torques cause eq. (1) not to be satisfied
exactly. Suppose that the true values, the measured values, and the measurement errors for the angular rate vector, the
nomina wheel angular momenta, the magnetic field vector, and the nominal magnetic torque rod dipole strengths are:

Wi = Winasc + DWW (49)
Puc = Numeasc + Dhyye (4b)
by = bmeasc + Dby (40)
M = Myeage + DM (4d)

The quantities on the left-hand sides of these equations are the unknown true values that appear in eq. (1). The terms with the
()meas SUbscript on the right-hand sides are the known measured quantities, and the terms with the D prefix are the unknown
measurement errors. The effects of star tracker measurement errors on A, are not considered because they are normally
insignificant.

The estimation algorithm lumps al of the measurement errors into a single error vector that is re-scaled so that each of



its entries has unit variance:
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where sy, St Sh, @nd s, are the per-axis measurement error standard deviations of, respectively, the angular rate vector, the
nomina wheel angular momenta, the magnetic field vector, and the nominal torque rod dipole moments. The estimation
algorithm assumes that vy is a zero-mean, identity-covariance, discrete-time, white-noise Gaussian random process, i.e., that vy
~ N(0,l) and that E{v,vk } =0if j1 k. Thedimension of v isn, = 6+n,+n,.

The definitionsin egs. (2) and (4a)-(5) and the gravity gradient torque formulain eqg. (3) can be used to re-write eq. (1)
in the following generalized form:
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where the notation (); refers to the i element of the vector in guestion and where hy = Dh;/s oy IS the normalized angular

impulse error vector. The 3" n, matrices Dy, Dix, Egk+1 @nd Ej.1 can be computed from the measurements. Their formulas can
be derived based on egs. (1)-(5). The formulas for several columns of these matrices are given below as examples:
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where the notation ();; refers to the ij™ element of the matrix in question. The remaining columns of the eq.-(6) matrices are
straightforward to compute. Their formulas have been omitted for the sake of brevity.

Equation (6) fails to be an exact representation of eg. (1) on one point. It has no provision to include the products of
magnetic field measurement error vectors Db and magnetic torque rod dipole moment measurement errors Dm. These error
product terms have been neglected because their inclusion would unnecessarily complicate the measurement model in eqg. (6).
These errors are small relative to the corresponding measured values. Their product should be negligible.

A lumped total least-squares parameter estimation problem can be defined by considering eq. (6) for the N different
intervals, k=0, 1, 2, ..., N-1. Suppose that one lumps the measurement errors into one large vector and the torque errors into
another large vector:

Vbig = [Vo', vi', Vo', oy W'TT (8a)
hbig = [hOTl thl hZTl sy hN-lT]T (8b)

The length of the large measurement error vector is nyig = N(N+1), and the length of the large torque error vector is
Nhuig = 3N. One can lump the N copies of eg. (6) into the following large system of measurement equations:

Mvbi
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where the large H matrices are:
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Lumped measurement equation (9) and the statistical models of the random error vectors vi;q and hy,y can be used to
define the following nonlinear |east-squares cost function:

nvpig nvpig T
J(X,Vbig) = %XT[H0+ a Hj(Vbig)j]T[H0+ a Hj(Vbig)j]X + %vbigvbig (11)
j=1 j=1

This paper's algorithm estimates x and vyig by finding the values that minimize this cost function subject to a constraint. This
cost function equals a constant plus the negative log of the probability density function for the error vectors viig and hyig
conditioned on the parameters given in x. Therefore, the minimizing x value is a maximum likelihood estimate, and the
minimizing vy value is a maximum a posteriori estimate.

Extra information must get included in the estimation problem in order for it to generate a non-trivial solution. The
unconstrained global minimum of J(x,Vyg) Occurs a x = 0, g = O because eg. (9) lacks non-homogeneous terms. The
physical reason for thisis that al of the parameters in the x vector can be scaled up or down without affecting the dynamic
response of the system. A large spacecraft and a small spacecraft will undergo the same dynamic response if the ratios of the
parameters in the x vector are preserved.

This paper's problem definition adds scaling information in the form of a scalar quadratic constraint on x that is part of
the optimization problem. This constraint takes the form:

0= 1- (LX) (LX) (12)

where L is a non-zero matrix with n, columns and at least 1 row. It is necessary to choose L wisely in order to get reasonable
estimates from the algorithm. Most of the problems solved in this paper use an L matrix that has 3n,, rows. All of its columns
are zero except for columns 7 through (6 + 3n,). These columns are set equal to the identity matrix divided by /n,, . Given
this definition, the constraint in eq. (12) forces the square of the Frobenius norm of C,,, to equal n,. This constraint controls
scaling in a reasonable way: it forces the average of the squares of the reaction wheels' scale factor recalibrations to equal 1.
If a given spacecraft has no reaction wheels, then a similar constraint could be applied to the square of the Frobenius norm of
the magnetic torque rod scale-factor/alignment matrix C;. Alternatively, it would be appropriate to enforce a constraint on
the square of the Frobenius norm of |, for a spacecraft that has neither reaction wheels nor magnetic torque rods. The best
choice of L is problem dependent.

The candidate L choices mentioned above have the common property that they act equally about all 3 spacecraft axes.
One might be tempted to form a constraint that involves quantities only from one axis. In theory, such a constraint should
serve to enforce a reasonable scaling, but in practice, a single-axis constraint often leads to poor estimates. Difficulties arise
when there is only weak dynamic coupling between the axes. In this situation, the axis with the constraint has a reasonable
scaling, but the other 2 axes have scalings that are too small. The estimator reduces the other 2 axes' contributions to J(X,Vuig)
simply by scaling down the x components associated with these axes. The resulting estimates can have nonsensical relative
scalings between the axes, scalings which can produce moment-of-inertia estimates that fail to obey the physical constraint
that the maximum eigenvalue of |, must be less than the sum of the remaining two eigenvalues. If the L matrix weightsall 3
axes equally, however, then the quadratic constraint will tend to balance the relative scaling between the axes in a reasonable
manner.

Another type of scaling error can arise even when the quadratic constraint weights the 3 axes equally. Consider an
example with weak coupling in which the measurements or unmodeled torques on one axis are much noisier than on another
axis. The estimation algorithm will scale down the elements of x associated with the noisier axis in order to better minimize
J(X,Wbig). In this situation, the user would have to recognize that one axis is noisier than the others and re-scale that axis
measurement error or torque s values so that the matrices of eq. (6) will properly account for the increased noise level.

There is an option to incorporate a priori information about the x parameter vector. This information takes the form of
an apriori square-root information equation **:

RapX + Zap = hgp (13)



where Ry, and 7, are the a priori square root information matrix and vector, respectively, and where h,, is a zero-mean,
identity-meatrix-covariance Gaussian random vector, hg, ~ N(O,1).

The final form of the estimation problem, after the incorporation of the quadratic constraint and the a priori
information, is:

find: X and Vyig (14a)
n
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tominimize:  J(X,Vhig) = X [Ho+ & Hj(hig) ;1 [Ho+ & Hj(Vuig);Ix
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+ L[Rapx+ Zap] T[RapX + Zgp] + LWiigVhig (14b)
subject to: 0= 1- (LX) (L) (140)

The a priori information equation should be used only in two situations. The first is when there is very accurate a
priori information about some of the elements of x. The second is when one needs to enforce an additional constraint in order
to make the problem observable. In thislatter situation, the constraining row of Ry, and the corresponding row of z,, will take
on very large values, normally orders of magnitude larger than the corresponding rows of the H matrices. This large row acts
as a soft constraint on the solution. Note, however, that one must use numerically robust square-root-based techniques, as are
developed in Sections |11 and 1V, if one wants to mitigate the potential for adverse affects from the resulting wide variations
in the sizes of different problem matrices.

One must be careful to apply an extra linear constraint in the form of an a priori information equation only where
appropriate. One might think of trying to substitute a linear overall scaling constraint for the quadratic scaling constraint in
€g. (14c). This may not be a good idea because a linear scaling constraint may bias the relative scalings between the different
axes towards equality even when the true scalings are not equal.

An appropriate situation for adding a linear constraint occurs when one is also estimating the moment-of-inertia matrix
of arotating flexible appendage. Suppose that the appendage's center of mass lies on the rotation axis, that [g1,0,,03] is an
orthonormal triad in the main spacecraft's coordinate system, and that g is directed along the appendage articulation axis. It
is possible to make simultaneous unohservable changes to the moment-of-inertia matrix of the main spacecraft body I, and
the moment-of-inertia matrix of the appendage |.. Given any scalar b, the unobservable change adds b(0:0, +0,0,") tO I
while subtracting the same quantity from I,. It is easy to show that these changes are unobservable because their effects on
the system angular momentum exactly cancel regardless of the appendage articulation angle. The following a priori linear
constraint removes this ambiguity:

(o |+ 83 1 mlz) -9(t] 1 alh + 03 1a0) = O (15)
where gis a positive number that makes the a priori estimates of 1, and |, satisfy this constraint.
[11.ATTITUDE PARAMETER ESTIMATION ALGORITHM
A. Algorithm Overview

The solution algorithm for the problem in egs. (14a)-(14c) exploits its bi-linear structure. For a fixed x, the cost
function is a linear least-squares cost in the unconstrained variable w,g.  Matrix factorizations can be used in an inner-loop
optimization to solve for the global minimizer v,y as a function of x. Call this solution Vyigox(X). This solution can be
substituted into the original cost function in eq. (14b) in order to define a new reduced-order estimation problem:

find: X (16a)
tominimize:  Jo(X) = J[X Vhigopt(X)] (16h)
subject to: 0=1- (Lx)" (LX) (16¢c)

This reduced-order problem is then solved numerically using the iterative Newton method in an outer optimization loop.

Newton's method applied to problem (16a)-(16c¢) starts with a guess X, that satisfies the quadratic constraint in eq.
(16c). Next, it defines a nonlinear function X.,e(Xo+DX) that is guaranteed to remain on the quadratic constraint as Dx varies
from zero and that takes on the initia value Xgne(Xo) = Xo. It uses this function to define the quadratic cost function
approximation:

Jnewt(Dxu DVbi g) @ ‘][Xcurve(X0+ DX), Vbigopt(XO)+D/big]
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where the matrices W,,, W,,, and W,,, are blocks of the Hessian matrix. This approximate cost function gets minimized subject
to the linearized approximation of the constraint in eq. (16c): (Lxo)'LDx = 0. The solution is [DXopt; DViigopd » @nd DXqp iS the
Newton step towards the solution of problem (16a)-(16c).

The Newton iteration finishes by performing a line search to approximately minimize the 1-dimensional cost function
dip(@) = I Xeurve(XotaDXopt), Vhigopt Xeurve(XotaDXop)]} . A step length of a = 1 is tried in order to get the superlinear
convergence of Newton's method when Xq is near the solution, but a gets decreased from 1 if necessary when far from the
solution in order to guarantee a cost decrease: Jip(aqy) < Jin(0). This forced decrease of the cost safe-guards the Newton
algorithm so that it is guaranteed to converge at least to alocal minimum. Enforcement of the cost-decrease constraint can be
accomplished by an appropriate search process *. The improved guess of the solution becomes the next Newton iterate,
X1 = Xeurve(Xo+@optDXopt), @Nd the process can be repeated until it converges to alocal minimum.

It is possible, in theory, to reverse the roles of x and wig in the agorithm, but this approach works poorly in practice.
For afixed guess of vig, one can solve exactly for the x that globally minimizes of the cost function in eq. (14b) subject to the
constraint in eg. (14c). The global minimization can be performed using an algorithm found in Ref. 12, or if z,, = 0, by using
two singular-value decompositions (SVDs) and several QR factorizations. This reversed method has been tried, but it does
not work well. One problem with this approach is the difficulty of finding a reasonable initial guess of vy Seemingly
reasonable values, such as vi,q = 0, can produce very strange results when the measurement error standard deviations are large.
Another problem with this approach is that the reduced-order cost function, Jio(Vhig) = J[Xopt(Vbig): Veig], Can have strong
nonlinearities that retard convergence. These strong nonlinearities may result from the fact that the inner optimization of x
resembl es an eigenvalue/eigenvector problem, and such problems can be very sensitive to their inputs when there are repeated
eigenvalues.

B. Inner-L oop Optimization of Vg

The inner-loop optimization of vyg for x fixed at X, minimizes the linear least-squares cost function
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which is equivalent to the cost in eq. (14b) without the a priori termsif e, and H, are

& = HOXO and HV = [(Hlxo)r (HZXO)! (H3X0)1 LY (anbigXO)] (19)

Although not explicitly stated, e, and H, depend on xg as shown in eq. (19).
The linear least-squares optimization problem in eq. (18) gets solved using standard QR factorization techniques ™
An orthogonal matrix Q, and a square, upper-triangular, non-singular matrix R,, get computed via QR-factorization to satisfy

UgS = & 1's 0

and the optimal vig gets computed as

Vbigopt(XO) [P\N O]Qv 80H (21)
The matrices involved in this calculation are large and sparse and have a dynamic programming structure. Section IV
develops equivalent calculations that use an efficient recursion which exploits this structure.

C. Enforcement of the Curved Constraint

The purpose of the function xy(X) IS to generate a vector that satisfies the constraint in eg. (16¢) while being close to
X. It must have the property that X.e(Xo) = Xo if Xo satisfies the constraint, and the difference X.ne(X) - X must be small if x is
near the constraint. These properties enable the line searches within the iterative Newton optimization procedure to exactly
follow the curved constraint in eg. (16c).

A suitable function xqrve(X) has been devel oped based on the singular value decomposition of L:
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where the matrices U3, Uy, Vi1, and V|, are sets of columns of the orthogonal factors of the SVD and where S, is the
positive-definite diagonal matrix that contains the non-zero singular values of L. The matrix V' projects x onto a subspace
in which every component affects the quadratic constraint, and the matrix V,," projects x onto the complementary subspace in
which none of the components affect the constraint. Given these matrices, a suitable X,(X) function is

.
ViV

Xcurve(x) = ( +V|_ 2V|:r2) X (23)
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The idea of this function is to split x into its constrained and unconstrained components and then to re-scale the constrained
component by 1/ \/(LX)T(Lx) in order to force satisfaction of the constraint. Given the SVD in eqg. (22), it is straightforward
to demonstrate that Xne(X) satisfies the quadratic constraint in eg. (16c), that X.ue(X0) = Xo When X, satisfies the constraint,
and that X.,ne(X) - X is small when x is near the constraint.

D. Quadratic Problem and Solution for Newton I ncrement to x

The following quadratic approximate cost function is used for determining the Newton increment to x:

y ¢ e U ey 6Hy 0 U ey eHy U
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where e = HxX01 eap = Rapxo"'zapi Hx = HO +H1(Vbigopt)1 +H2(Vbigopt)2 +..+ anbig(vbigopt)nvbig' and B = [(HlTe)' (HzTe),..., (anbigTe)]-
Note, e is the error in the concatenated set of Euler equations, and ey, is the error in the a priori information equation. Both
errors are evaluated at the current solution guess [Xo; Vigopt(Xo)] -

The quantity | in eq (24) is like a Lagrange multiplier. It predicts the cost effects of the curvature in Xqyve(Xg+DX)
under the conditions that x, satisfies the quadratic constraint in eq. (16¢) and that Dx satisfies the linearized approximation of
the constraint: a'Dx = 0 where a = L'Lx,. The proper value of this multiplier depends on the actual form of the function
Xarve(X). For the function defined in eq. (23) the proper valueis

| = x{ViVi[H e+ Ripeqp] (25)

The solution for the minimum of eq. (24) subject to the constraint a'Dx = 0 starts with a transformation of the first cost
term that enables unconstrained minimization with respect to Dvg. Suppose that one performs the following QR factorization
and associated transformation

Ry Ryt €y Hyl éou g’v e U

80 R,U=8&] 00 ad & = (26)
nge qu &0 u aX0 Qogg |goptu

é i &0 Rapy €4 u gep H

where Qyg is an orthogonal transformation, Ry, R, and R are block matrices, with R,, and R square and upper-triangul ar
and R,, nonsingular, and z, and z are vectors. The upper zero in the large vector that contains z, and z is there by virtue of
the fact that the cost function in eq. (24) is an expansion about an optimized value of vig. The Qg matrix can be used to
transform each of the factors in the first cost term of eq. (24) so that the block matrices and vectors on the left-hand sides of
egs. (26) replace those on the right.  After performing this transformation, the minimizing Dvy, 4 can be determined by solving

the necessary condition that results from setting the partial derivative of Joeu(DX, Dvyig) With respect to Dvyig equal to zero.
Theresultis

DViig = - R IR+ (BRy) T 1Dx (27)

Note that the matrices in egs. (26) and (27) are large, sparse, and structured. Section IV presents techniques that exploit the
structure of these matricesin order to carry out the calculations of egs. (26) and (27) in an efficient recursive manner.



The optimal solution for Dy can be used to eliminate it from the transformed version of the cost function in eq. (24).
This leaves a linearly constrained reduced-order quadratic optimization problem whose solution is the Newton search
direction:

find: Dx (28a)
tominimize: Jnewro(DX) = 3 DX{RGR -(BRY)(BRY) -(BRy)IRx R (BRyy) T+ LTL}Dx

+ (ZRIDX + (5247 7,) (280)
subjectto: 0 = a'Dx = (L'Lxo)'Dx (28c)

The problem in egs. (28a)-(28c) can be solved using QR factorizations and Cholesky factorizations. The first QR
factorization is used to determine the null space of the constraint:

éau
[ Qacl gg g (29)
where g, is the first column of the resulting orthogona matrix, Q. constitutes the last n,-1 columns, and r, is a non-zero
scalar. This factorization can be used to transform the perturbation vector Dx into a constrained component, Dx., and an
unconstrained component, Dx,:
Dx.i1 €gl U
éDx.u_ Sgy (DX (30)

One next uses Qg to project the square-root weighting matrix R, onto the unconstrained Dx, space and then one QR-
factorizes the result to retrieve a square-upper triangular matrix:

ERyU_
Q 80K RoQaz (31)

where Q, is an orthogonal matrix and R, is a square, upper-triangular, nonsingular matrix of dimension n,-1.

Next, one defines the change of coordinates Dz, = R, ,Dx,. The following unconstrained Dz, optimization problem is
then equivalent to the estimation problem in egs. (28a)-(28c):

find: Dz, (32a)

tominimize:  Jaw(Dz) = 1Dzi{rl-DW,}Dz, + 97Dz, + 2(z52+7 z) (32b)
where

DW, = (Rid)" QIA (BRA(BRWT +(BRyRy + R (BRW) T +1 LTLIQuuR (333)

9, = (Ri)TQaRizx (33b)

and where the positive scalar r isnormally set equal to 1. r will get increased above 1 if necessary in order to ensure that the
cost Hessian matrix r I-DW,, is positive definite. This modification option is part of the guarding technique that ensures the
convergence of Newton's method to alocal minimum. Its effect on Dx guarantees that there exists a positive a which yields a
decrease of the line-search cost function J,o] Xeurve(Xo+aDx)].

The Cholesky factorization of the Hessian produces R,, such that
RLR, = rl-DW,, (34)

where Ry, is a square, upper-triangular, nonsingular matrix of dimension n,-1. The Cholesky factorization process can be used
to monitor the positive definiteness of the Hessian. One begins using the valuer = 1. If the Cholesky factorization process
fails because the matrix on the left-hand side of eq. (34) is not positive definite, then r gets increased, and the Cholesky
factorization gets re-evaluated. A simple geometric progression of the form r .o, = 1.05r normally yields a positive definite
Hessian matrix after a few Cholesky factorizations. The matrix dimensions involved are not very large. Therefore, it is
acceptable to determine a reasonable value of r viathis brute-force heuristic iteration. One might try alarger increase factor
if one finds that too many iterations are required to determine an acceptabler vaue.



The fina problem transformation from Dx, to Dz, is motivated by numerical considerations. One should avoid the
squaring of matrices because squaring amplifies the adverse effects of poor matrix conditioning. The transformation to Dz,
allows one to avoid squaring the matrix R, before computing the Cholesky factorization of the Hessian. For a small residuals
estimation problem, i.e., for small e, the magnitude of DW,, will be small. In this case, r = 1 will yield a positive definite,
well-conditioned Hessian matrix for the Dz, problem, and the only squaring that occurs, the squaring in eg. (33a), will have no
adverse effects on the solution.

The matrix factorizations and problem transformations in egs. (29)-(34) can be used to solve the origina problem in
€gs. (28a)-(28c). The solution is:

Dx = - QuRuRZ(Rz)" g, (35)
These matrix factorizations also provide a means of calculating the estimation error covariance matrix:
Pa = Qa2RiiRez (Qaz2RiuRez)' (36)

In reality, thisis only an approximation of the Cramer-Rao lower bound of the estimation error covariance. This covariance
matrix is only valid at the termination of the optimization process, when X, is the final solution to the estimation problem and
whenr = 1. Note that P, issingular. All of its eigenvalues are positive except for one that is zero. It corresponds to the
eigenvector in the direction a = L'Lxo, which is the normal to the quadratic constraint in eq. (16c). It makes sense for Py to
have a zero eigenvalue in this direction because, according to the constraint, this component of x is known exactly.

E. Warning about Total L east Squares Problems

It is well known that total least squares problem can fail to have sensible solutions 8 If the attitude parameter
estimation problem in egs. (14a) - (14c) does not have a sensible solution, then this fact will manifest itself in a failure of the
guarded Newton method to converge. It will continue to decrease its cost a every iteration, but the usual algorithm
termination criterion of ||Dx|| ® O will not be achieved. If the algorithm fails to converge even after hundreds of iterations,
then one should consider whether the problem iswell posed. It is often possible to transform an ill-posed problem into awell-
posed problem by adding a priori information through R,, and z,, or by decreasing the measurement error standard deviations
Sws Stww Shy aNd S,

IV.RECURSIVE QR MATRIX FACTORIZATIONS AND INVERSIONS

The QR factorizations in egs. (20) and (26) and the inversions of R, in egs. (21) and (27) can be carried out in an
efficient recursive manner. The following analysis concentrates on recursive calculations for the large matrix operations in
€gs. (26) and (27). The methods for egs. (20) and (21) are ailmost identical and are discussed only in brief at the end of this
section.

Suppose that one interchanges the order of the rows on the right-hand sides of the two equationsin eq. (26). Then the
error equations whose squares form the first term on the right-hand side of eq. (24) can be rewritten in the form:

&1 0 0 - 0 0 OUlUgpynyg SEWU
éDgo Eg O - 0 0 Fo@ggog g U
€0 1 0. 0 0 0Us g vl
g PDaBer 90 RGenTl L eaqn=o (37)
A . . N . . N . -5 - é: u
§0 0 0 - -Dyi Ew Fnag &N gy g0
&0 0 0 0 | 0 gsbwu e, 0
50 0 0 0 0 vEDx §  elNg
g Rap 1 € u 8%
where, based on eq. (6) and associated definitions,
DVk = [leXOI D2kX01 weny DndXO] for k: 0! weey N'l (3861)
Ev = [ExXos ExXoy -y EniXg] fork=1,.., N (38b)
Ny Ny
Fk :[E0k+1+Aé (Vk+1)IEIk+l] -[DOk +.é (Vk)Ile] and e = FkXO fork= 0, veey N-1 (380)

i=1 1=

An iterative QR factorization is then used to orthogonally transform eq. (37) into the following form:
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Ry Rn 0 0 RyUéDvpu  ézu
€o 0 uepy U eézu
S0 G RZT 0 Rraepiu  ertg
e, . "2 X0 é 720 4 8230 = g (39)
6i i ae i ateig
60 0 0 - Rw Rwgédni1g  éng
g0 0 0 0 Ry(6Dvy U &2,
g0 0 O 0O OHEDxY EzH

Each Ry, Ru:1, and Ry is a matrix block, with Ry square, upper-triangular, and nonsingular, and each z is a vector. The
matrix R, and the vectors z, and z are exactly as defined in eq. (26). The upper right-hand blocks involving Ry for k=0, ...,
N and Rg:: for k = 0, ..., N-1 constitute the R,, matrix of eg. (26). The far-left blocks involving R, for k = 0, ..., N-1
congtitute the R,, matrix of eq. (26). In accordance with eq. (26), the vectors z, ..., zy will be zero because eg. (26) is a
linearization about optimized v, values.

The transformation from eq. (37) to eq. (39) proceeds as follows. It temporarily stores intermediate results in three
matrices, R, Raok and Roo, and in two vectors, z, and zo. At k = 0 these temporary matrices and vectors get initialized to
be empty arrays. Their values at later stages get computed by the factorization process. The transformation starts by
recursively performing the following QR-factorization and transformation for stagesk =0, ...,N-1:

éRkk Rit R U &Ry 0 Ryl € 7 @ €z u

Q8 20 Ramka Rtlzk+1u_e 0 0 Ptzzkg and & Aztlk+l TeZtZk (40)
60 0 Roxul g 5 . FO i gztzkﬂg gV §
go 0 0 f &Pw Bwa Rk g Bz B 6% 0

At stage N the transformation takes the modified form.

Ry Rl gptllN Rtl2NH ézy U g;:l’\‘u

Qe 0 Ryli=g O RNy and ez, u=qf¢ e (42)
§0 o044 e G d N g
é Ug0 Rypy &t @eapg

The vectors z, ..., zn are components of the large residual error vector z from eqg. (26).

Given transformed eq. (39), the two multiplications by R;Vl in eq. (27) can be performed as follows. Suppose that the
large matrix B in eq. (27) is broken down into blocks: B = [By,By,...,.Bx] @nd suppose that the matrix BF{;\,1 is aso broken
down into blocks: BR); = [Co,Cy,...,Cn]. Then the blocks of this latter matrix can be calculated by using the following
recursion:

CO = BoR(_)(:)L and Ck :[Bk - Ck—le-lk]RI;kl fork= 1, vy N (42)

Next, define the vector sequence Dz = (Ro+Ci')Dx for k=0, ..., N. This vector sequence is used in the following backwards
recursion in order to compl ete the evaluation of eg. (27):

Dvy =- RigDzy and Dy =- Ryl[Dzy + RyssDVis] for k= N-1, N-2, N-3,..., 0 (43)

Note that the C, values from eqg. (42) can also be used to develop efficient summations that compute the terms involving
BR\',\,l in eg. (33a)'s formulafor DW,,.

The evaluation of egs. (20) and (21) proceeds in a similar manner. There is no need to include the columns associated
with x in the equivalents of egs. (37), (39), (40), and (41). The v, vectors in the equivalents of eq. (37), (40), and (41) are all
set to zero, and the vectors ec = (Egw1-Dak)Xo 1N these equations because they are linearized about vy = vi.; = 0. This causes
the vectors z, ..., zy in the equivalent of eg. (39) to be non-zero. They replace the Dz, vectors in the equivaent of eq. (43),
and the outputs of that equation’s recursion are Voopi(Xo), Vigpt(Xo), -+ Viopt(Xo)-
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V. RESULTSUSING DATA FROM THE MAP SPACECRAFT
A. Overview of Spacecraft and Data Sets

The new parameter estimation algorithm has been tested using flight data from the MAP spacecraft. MAP was
launched on June 30, 2001 and reached its final orbit near the L2 Lagrange point of the Sun/Earth-Moon system on Oct. 1,
2001 after using gravity assists from the Moon **. The spacecraft carries two star trackers and a 3-axis rate-gyro package for
attitude sensing, and it uses three nearly orthogonal reaction wheels to control attitude. Dynamics parameters have been
estimated using data that was collected on July 1 and 2, 2001. Gravity-gradient and magnetic torques have been neglected
because the spacecraft was far enough from the Earth during this time to render G, and b, negligible.

The estimation problem has been defined to estimate an 18-element x vector. It includes the 6 independent elements of
the moment-of-inertia matrix, I, the 9 elements of the reaction wheel scale-factor/alignment matrix, C,,, and the 3 elements
of the reaction wheel angular momentum bias vector, h,,s. The quadratic constraint in eg. (14c) is defined to constrain the
sum of the norms squared of the 3 columns of C,,, to equal 3.

The white-noise intensity of the unmodeled torque and the measurement error standard deviations that have been used
in the estimator are gp, = 2.3° 10™ N%m?-sec, s,, = 2.5" 10° rad/sec, and s, = 0.0244 N-m-sec. Note that S, is relatively
large, on the order of 2.5% of the total system angular momentum, which was about 1 N-m-sec during the time when flight
data was collected. The limited resolution of hymes provided the most significant noise source in the estimation problem. Its
largeness stems from the limited number of bits that could be used to telemeter reaction wheel data to MAP's ground station.
It isbelieved that the actual flight hardware keeps track of hymeasc USiNg a much higher precision.

Three different data sets have been used to do estimation. The first is about 6 hours long and starts at 15:19 UT on
July 1, 2001. It includes 10 large-angle slew maneuvers that are controlled by the reaction wheels. The second data set is
about 5 hours long and starts at 12:57 UT on July 2, 2001. It aso includes 10 slew maneuvers that are similar in magnitude,
but they are more abrupt. The third data set is only 1.6 hours long and starts at 19:22 UT on July 2, 2001. It operatesin the
MAP sky scanning mode. It rotates about its z axis at a nominal rate of 0.047 rad/sec (spin period = 134 sec). Super-imposed
on the spin is a nutation that has a body-axis period of 129 sec and a coning half angle which ranges from 17 deg to 28 deg.
This motion is controlled by the reaction wheels. They operate at a nominal angular momentum magnitude of ||hymeasd| =
29.3 N-m-sec in order to produce this motion, and the range of the dynamic variations of the wheel angular momentum for
each axis is no more than 0.34 N-m-sec. Thus, this last data set lacks significant variability of its wheel speeds and its body-
axis angular rates. The nominal sample interval for al data setsis Dty = 10 seconds. Dataisavailable at 1 Hz, but a 0.1 Hz
sampling rate has been used in the interests of conserving computation time.

B. Representative Results

Consider the results of a typical estimation case. This case uses all three data sets simultaneousdly in its estimation.
Different data sets can be concatenated by zeroing out the Doy, Dix Eqk1, and Ejq matrices for the stage that falls on the
boundary between two data sets. The estimation problem does not include any a priori information in the form of Ry, and Z,.
The agorithm converged to a well defined minimum of the least-squares cost function in about a dozen Newton iterations
starting from the pre-flight estimates of the dynamic parameters.

The agorithm is able to improve its attitude dynamics parameter estimates significantly. Although there are no known
truth values against which to measure success, there are several metrics that point to a significant improvement. One
indication is that the final parameter estimates' |east-squares cost is smaller than the initial cost by a factor of 9 even though
the initial cost was calculated after partial optimization of the measurement error estimates in . This large difference in
cost occurs mostly in the third data set.

Consider the modeling errors shown in Fig. 1. The top graph plots norm time histories for the estimated wheel angular
momentum measurement error [[Dhyl|, and the bottom graph plots norm time histories for the unmodeled disturbance torque
[IDhin/Dty]|. The solid grey curves on the two graphs correspond to the nominal pre-launch dynamic parameter estimates, and
the dotted black curves correspond to the new algorithm's best estimates of the parameters. Both sets of curves use optimal
estimates of the measurement errors. The new estimates of the dynamic parameters yield measurement errors and unmodel ed
torques that, on average, are about 7 to 7.5 times smaller than those associated with the pre-flight parameters. Thus, the new
parameter estimates model the M AP spacecraft's dynamics much better than do the pre-flight parameters.

The differences between the new parameter estimates and the pre-flight values are statistically significant. The
maximum difference between the old and new estimates of the elements of I, is 7.3% of the maximum principal inertia, but
the maximum cal culated estimation error standard deviation for an I, element is only 0.28% of the maximum principal inertia.
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Similarly, the maximum change in an element of the C,, matrix is 0.035 while the maximum standard deviation for the
estimation error of an element of C,, is 0.0026. The differences between the pre-flight parameter estimates and the new
estimates are small enough to seem reasonable, given the usual methods by which pre-flight estimates are determined, yet they
asignificant if one needs a very accurate model of the attitude dynamics.

A more comprehensive method of assessing the statistical significance of the differences between the pre-flight and
optimal parameters is to calculate the scalar test statistic (Xop-Xoretight)' QazRuu’ Rez' ReRuuQaz' (Xopr-Xoretiignd)- ~ This is the
difference squared of the estimates normalized by the inverse of the estimation error covariance matrix as projected into the
null space of the quadratic constraint in eq. (14c). This statistic will be a sample from a c? distribution of degree n,-1 if the
differences between the two estimates are merely the result of random errors. The value of this statistic is 1.74° 10° for this
case. Giventhat n-1 = 17, there is virtually zero probability that these parameter differences are the result of random noise.
Put differently, the average difference between the preflight parameter estimates and the optima estimates is
V1.74” 10°/17 =101 standard deviations, which is very significant.

One might question how differences of |, and C,,, that are on the order of 7% or less can produce the factor-of-7
differences in the error magnitudes shown on Fig. 1. The answer has to do with how MAP was being controlled during the
third data set. The magnitude of the actual wheel angular momentum is 27 N-m-sec, and the magnitude of the rotational
angular momentum of the main spacecraft body is 26 N-m-sec, but the total spacecraft angular momentum is only 1 N-m-sec.
Thus, the large wheel angular momentum and the large rotational angular momentum almost cancel each other out to yield a
total angular momentum that is less than 4% of either component's angular momentum. This cancellation has the potential to
amplify the significance of parameter errors by a factor of 26 to 27, which is why a 7% change in an element of |, can have
such alarge impact on the unmodeled torque magnitudes.

C. Prediction Capability

Another case has been run to more clearly illustrate the usefulness of the algorithm's parameter estimates for purposes
of predicting the dynamic response of the MAP spacecraft. In this test, only the first 2 data sets have been used to estimate
parameters, and the resulting parameter values have been used to estimate unmodeled torque errors and measurement errors
for the third data set without further correction of the parameter estimates. The resulting wheel angular momentum errors and
unmodeled torques are shown in Fig. 2. Note that the axis scales of Fig. 2 are the same as in Fig. 1. It is obvious from a
comparison of the two figures that the parameter estimates from the first 2 data sets do a much better job of predicting the
MAP attitude dynamics than do the pre-flight parameter estimates -- compare the solid grey curves on Fig. 1 with the curves
on Fig. 2. The model errors when using the parameter estimates from the first two data sets are between 4.5 and 5 times
smaller, on average, than the model errors when using the pre-flight parameters. Also obvious is the fact that the parameter
estimates which use all three data sets do a dightly better job of modeling the attitude dynamics during the 3rd data set --
compare the dotted black curves on Fig. 1 with the curves on Fig. 2. This makes sense because the optimal parameter
estimates from Fig. 1 interpolate into the third data set.

D. Degradation of Estimation Error with Limited Data

Another case has been run in an attempt to estimate parameters based only on the third data set. Recall that the third
data set does not have a rich dynamic response. It just nutates with reaction wheel speeds and an angular velocity vector that
are aimost constant. If the only scaling information added to the problem is the quadratic constraint, then the estimation
algorithm takes many iterations to converge, 117, and its estimates are nonsensical. The reaction wheel scale factors differ
from the pre-launch estimates by as much as 47%, and the |, estimate has two negative eigenval ues!

An attempt has been made to rescue the situation by adding a priori information. The Ry, and z,, values have been set
up to indicate that the a priori reaction wheel scale factors are accurate to within 0.2% 1-s. This estimation run yields more
reasonable estimation results. All of the eigenvalues of the I, estimate are positive, and the estimates of the elements of C,,,
differ from their pre-launch values by no more than 0.086. Nevertheless, the overall estimated parameter vector is not very
accurate. For example, the minimum eigenvalue of the |, estimate is only 10% of the pre-flight value. It is unredlistic to
suppose that the pre-flight estimate would be in error by such alarge amount.

The calculated estimation error standard deviations are very large even when the algorithm thinks that it has been given
highly accurate a priori estimates for the scalings of the C,,, columns. The best estimation error standard is 2 times larger than
the corresponding standard deviation for the case that uses all 3 data sets. The worst one is amost 5000 times larger than its
counterpart for the 3-data-set case. Thisis particularly telling when one considers that the case with 3 data sets did not even
include a priori information beyond the quadratic constraint. Thus, it is critically important to use data with rich dynamic
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variations in the control inputs and the attitude response if one wants to get good parameter estimates from this paper's
algorithm.

E. Miscellaneous Results Discussion

A test has been made of what happens when one tries to pose the attitude estimation problem as a regular least-squares
problem with a quadratic constraint. One might be tempted to model the problem in this way because the global solution can
be determined simply by performing two SVDs and several QR factorizations. What one sacrifices is model fidelity. One
must eliminate the multiplicative errors from the model, which eliminates the errors in w and hy,. The difficulty with this
approach is that these are the problem's most significant error sources. If one eliminates them, then the problem model
becomes dubious. Although the problem is easy to solve, it is obvious that the resulting estimates contain significant errors.
The minimum eigenvalue of the 1, estimate is only 22% of the pre-flight estimate, and the columns of the C,,, estimate differ
in alignment from their pre-flight values by 20 to 27 deg. This failure highlights the importance of proper error modeling in
parameter estimation problems.

As mentioned already, the dominant errors in the MAP attitude dynamics data are those in the reaction wheel telemetry
stream, hymeas-  This fact suggests two ideas for future consideration. The first is that it would good for attitude estimation
and control engineers to ask command and data handling engineers to deliver more accuracy in the hye.s telemetry stream on
future missions. The current level of accuracy may suffice for normal "housekeeping” purposes, but increased accuracy could
be critical to any attempt to implement back-up mode attitude determination or control functions in the event of a hardware
failure.

The second idea has to do with the design of attitude estimation algorithms based on Euler's equations. This paper's
parameter estimation algorithm obtains good results when it estimates corrections to the telemetered reaction wheel angular
momentum time histories. This suggests that one should include estimation of reaction wheel corrections in an Euler-based
attitude and rate estimation Kalman filter if the reaction wheel data is of low accuracy. Such an augmentation may make the
difference between success and failure of the attitude filter.

V1. CONCLUSIONS

A new algorithm has been developed for estimating the parameters of a spacecraft's attitude dynamics model by using
telemetered attitude and rate measurements. The estimated quantities include the moment-of-inertia matrix and, if present,
alignments, scale factors, and biases for reaction wheels and magnetic torque rods. The input data includes 3-axis attitude
from star trackers, 3-axis rate from rate gyros, nominal reaction wheel angular momenta, nominal torque rod dipole moment
strengths, and magnetic field as measured by a magnetometer.

The algorithm uses a trapezoidally integrated version of Euler's equation in inertial coordinates as its basic estimation
equation. The resulting estimation problem includes additive disturbance torque errors and multiplicative sensor
measurement errors and is in the general form known as a total least-squares problem. A scalar quadratic constraint is added
to the least-squares problem statement in order to make it well posed by constraining the overall scaling of the parameter
estimates.

The algorithm uses inner and outer |east-squares optimizations to estimate the dynamic model parameters. The inner
optimization uses linear least-squares techniques to compute estimates of the sensor measurement errors for given values of
the model parameters. The outer optimization uses a guarded Newton iterative numerical procedure to estimate the most
likely model parameters.

The algorithm has been tested using data from the MAP spacecraft. The algorithm's best estimates of the moment-of-
inertia matrix and the reaction wheel scale-factor/alignment matrix differ from the pre-flight estimates by 7% or less, but they
can reduce the level of torque modeling error by a factor of 5 to 7 in certain modes of operation where spacecraft angular
momentum and reaction wheel angular momentum almost cancel each other.
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Fig. 1. Comparison of wheel angular momentum error  Fig. 2. Wheel angular momentum error magnitudes (top

magnitudes (top plot) and unmodeled disturbance plot) and unmodeled disturbance torque mgnitud%
torque magnitudes (bottom plot) for two different (bottom plot) for the 3rd data set when using
parameter estimates, 3rd data set. parameter estimates based on the first 2 data sets.
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